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SOME APPLICATIONS OF SMOOTH BILINEAR FORMS WITH

KLOOSTERMAN SUMS

VALENTIN BLOMER, ÉTIENNE FOUVRY, EMMANUEL KOWALSKI, PHILIPPE MICHEL,

AND DJORDJE MILIĆEVIĆ

Abstract. We revisit a recent bound of I. Shparlinski and T. P. Zhang on bilinear forms with
Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier
coefficients of modular forms. We use these bounds to improve on earlier results on sums of
Kloosterman sums along the primes and on the error term of the fourth moment of Dirichlet L-
functions.

1. Statement of results

1.1. Preliminaries. This note is motivated by a recent result of I. E. Shparlinski and T. P. Zhang
[7] concerning bilinear forms with Kloosterman sums. Given a prime q and m P Fq, let

Kl2pm; qq :“ 1?
q

ÿ

xPFˆ
q

xy“1

eqpy ` mxq

denote the normalized Kloosterman sum, where eqpxq “ expp2πix{qq. Shparlinski and Zhang
([7, Theorem 3.1]) proved the following theorem.

Theorem 1.1 (Shparlinski–Zhang). Let q be a prime number and let M,N Ă r1, q ´1s be intervals

of lengths M,N ě 1. Then we have

(1.1)
ÿ ÿ

mPM,nPN

Kl2pmn; qq !ε q
ε
´
q1{2 ` MN

q1{2

¯

for any ε ą 0, where the implied constant depends only on ε.

In light of the Weil bound for Kloosterman sums |Kl2pm; qq| ď 2, the estimate (1.1) is non-trivial
as long as MN is a bit larger than q1{2. On the other hand, if M or N is close to q, other methods
(e.g. the completion method) become more efficient. In particular, the restriction that M and N

are ď q is not really restrictive for applications.
The aim of this paper is two-fold. On the one hand, we put Theorem 1.1 into a slightly more

general context in Propositions 1.2 and 1.3; viewing it as a correlation estimate for Kloosterman
sums and a divisor function (which itself is a Fourier coefficient of an Eisenstein series), it turns out
to be a consequence of a version of the Voronoi summation formula. On the other hand, we give two
applications of independent interest to the fourth moment of Dirichlet L-functions in Theorem 1.5
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and sums of Kloosterman sums over primes in Theorem 1.8; these applications are discussed in
Subsection 1.3.

1.2. Variations on a theme. Our first result is a smoothed version of the bound (1.1). To state
it, we use the following class of smoothing functions. For a modulus q ě 1 and a parameter Q ě 1,
we will consider functions satisfying the following conditions:

W : r0,`8rÑ C is smooth, SupppW q Ă r1{2, 2s,
W pjqpxq !j,ε

`
qεQ

˘j
for any x ě 0, j ě 0 and ε ą 0.

(1.2)

Proposition 1.2. Let q be a prime number and let Q ě 1 be a real number. Let W1,W2 be functions

satisfying (1.2). For any M,N ě 1 and any integer a coprime with q, we have

(1.3)
ÿ ÿ

m,n

W1

´ m

M

¯
W2

´ n

N

¯
Kl2pamn; qq !ε pqQqεQ2

´
q1{2 ` MN

q1{2

¯
.

Furthermore, if W3 also satisfies (1.2), then for any Y ě 1, we have

(1.4)
ÿ ÿ

m,n

W1

´ m

M

¯
W2

´ n

N

¯
W3

´mn

Y

¯
Kl2pamn; qq !ε pqQqεQ2

´
q1{2 ` MN

q1{2

¯
.

In both cases, the implied constant depends only on ε.

The inequalities (1.3) and (1.4) could be easily deduced from the result of Shparlinski and Zhang
by summation by parts with respect to the variables m and n. In §2, we will give an alternative
proof based on [4, Prop. 2.2]. The Q-dependence in Proposition 1.2 is presented in a compact form
well suited for our applications but it is not fully optimized otherwise (in particular, for Theorem 1.5
we will be using Q “ qε); our proof actually yields a better Q-dependence in some other ranges.

We can view the bounds (1.3) and (1.4) essentially as sums over a single variable weighted by
the divisor function d. The advantage of our proof of Proposition 1.2 is that it provides naturally
an automorphic generalization, where the divisor function is replaced with Fourier coefficients of
modular forms.

Proposition 1.3. Let pλf pnqqně1 be the Hecke eigenvalues of a holomorphic cuspidal Hecke eigen-

form f of level 1, normalized so that |λf pnq| ď dpnq. Let q be a prime number, and let W be a

function satisfying (1.2) with Q “ 1. Let a be an integer coprime to q. For any N ě 1 and any

ε ą 0, we have

(1.5)
ÿ

ně1

λf pnqKl2pan; qqW
´ n

N

¯
!ε,f pqNqε

´
q1{2 ` N

q1{2

¯

where the implied constant depends only on f and ε.

Remark 1.4. This is by no means the most general statement that may be proved along these
lines.

As pointed out in [7], the estimates (1.1) and (1.3) are significant improvements of the bound

(1.6)
ÿ ÿ

m,n

W1

´ m

M

¯
W2

´ n

N

¯
Kl2pamn; qq !ε,Q qεMN

´
1 ` q

MN

¯1{2
q´1{8,

and likewise the estimate (1.5) improves significantly over

(1.7)
ÿ

ně1

λf pnqKl2pan; qqW
´ n

N

¯
!ε,Q qεN

´
1 ` q

N

¯1{2
q´1{8,

both of which were obtained by Fouvry, Kowalski and Michel as special cases of [2, Thm. 1.16] and
[3, Thm. 1.2].
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1.3. Applications. The bounds (1.6) and (1.7) have been applied recently in a number of prob-
lems, and the bounds (1.1) and (1.3) lead to further improvements. The main source for these
improvements is the new input of Proposition 1.2, but a bit of extra work is necessary.

As a first application, we can improve our work on the error term for the fourth moment of
Dirichlet series Lps, χq of characters χ to a prime modulus q ([1, Theorem 1.1]).

Theorem 1.5. There exists a polynomial P4 P RrXs of degree 4, such that

1

q ´ 1

ÿ

χ pmod qq

|Lpχ, 1{2q|4 “ P4plog qq ` Opq´1{20`εq

for all primes q, where the implied constant depends only on ε ą 0. If the Ramanujan–Petersson

conjecture holds for Fourier coefficients of Hecke–Maaß forms of level 1, then the exponent 1{20
can be replaced by 1{16.

Remark 1.6. In [1, Theorem 1.1], the exponents were respectively 1{32 (unconditionally) and 1{24
(assuming the Ramanujan–Petersson conjecture). The first breakthrough in this respect is due to
M. Young [8] who obtained an asymptotic formula with exponents 5{512 (resp. 1{80).

Remark 1.7. The proof of Theorem 1.5 follows the same lines as [1, §6.3], except that instead of
the bound [1, (5.5)] (i.e. (1.6) above) we use Proposition 1.2. It is of some interest to record here in
outline how this improved exponent arises. The problem of the fourth moment leads to evaluating
non-trivially the shifted convolution type sum

(1.8)
ÿ ÿ

m—M,n—N
m”n pmod qq

dpmqdpnq «
ÿ ÿ

m1,m2,n1,n2

m1m2”n1n2 pmod qq

1

with d the usual divisor function and with MN “ M1M2N1N2 « q2. The spectral theory of
automorphic forms provides a good error term when M and N are relatively close in the logarithmic
scale. Otherwise, assuming that N “ N1N2 ě M “ M1M2, we apply the Poisson summation
formula to both variables n1 and n2 (equivalently, the Voronoi summation formula applied to the
variable n “ n1n2), getting two variables of dual size n˚

1 „ q{N1 and n˚
2 „ q{N2 and a smooth

quadrilinear sum of Kloosterman sums
ÿ ÿ

m1,m2,n
˚

1
,n˚

2

Kl2pm1m2n
˚
1n

˚
2 ; qq,

which is evaluated by various means, in particular using the smooth bilinear sum bound (1.3).
In our specific case, the bound (1.3) amounts to applying the Poisson formula to two of the four
variables m1,m2, n

˚
1 , n

˚
2 . This leads back to a sum of the type (1.8), which is then bounded trivially.

This argument is not circular, and allows for an improvement, because we (implicitly) apply the
process to variables different from the ones we started from (for instance to m1 and n˚

1 instead of
n˚
1 and n˚

2).

Our second application is an improvement of the first bound in [2, Cor. 1.13] for Kloosterman
sums over primes in short intervals:

Theorem 1.8. Let q be a prime number. Let Q ě 1 be a parameter and let W be a function

satisfying (1.2). Then for every X such that 2 ď X ď q and every ε ą 0, we have

(1.9)
ÿ

p prime

W
´ p

X

¯
Kl2pp; qq !ε q

1{4`εQ1{2X2{3.

3



In addition, for every prime q, every X such that 2 ď X ď q and every ε ą 0, we have

(1.10)
ÿ

pďX
p prime

Kl2pp; qq !ε q
1{6`εX7{9.

In both cases, the implicit constant depends only on ε.

Remark 1.9. The range where these bounds are non-trivial is the same as that in [2, Cor. 1.13],

namely the length of summation X should be greater than q3{4`ε if Q is fixed. The improvement
therefore lies in the greater cancellation in this allowed range. For instance, when X “ q, we
gain a factor q1{18´ε over the trivial bound for the sum appearing in (1.10) instead of q1{48´ε in
[2, Corollary 1.13].

Acknowledgement. We would like to thank the referee for very useful suggestions that improved
the presentation of the paper.

2. Correlation sums of Kloosterman sums and divisor-like functions

In this section, we revisit Theorem 1.1 and establish Proposition 1.2. The idea behind the proof
of Theorem 1.1 is that after applying the completion method twice over the m and n variables, the
Kloosterman sum Kl2pamn; qq is transformed into the Dirac type function q1{2δmn”a pmod qq, and
taking the congruence condition into account one saves (in the most favourable situation) a factor

q1{2{q “ q´1{2 over the trivial bound.
In our smoothed setting, the completion method is replaced by two applications of the Poisson

summation formula or more precisely by a single application of the tempered Voronoi summation

formula of Deshouillers and Iwaniec, in the form established in [4, Prop. 2.2].
Let q be a prime number, and let K : Z Ñ C be a q-periodic function. The normalized Fourier

transform of K is the q-periodic function on Z defined by

pKphq “ 1?
q

ÿ

n mod q

Kpnqeqphnq

and the Voronoi transform of K is the q-periodic function on Z defined by

qKpnq “ 1?
q

ÿ

h mod q
ph,qq“1

pKphqeqphnq.

Proposition 2.1 (Tempered Voronoi formula modulo primes). Let q be a prime number, let K :
Z ÝÑ C be a q-periodic function, and let G be a smooth function on R2 with compact support and

Fourier transform denoted by pG. We have

(2.1)
ÿ ÿ

m,nPZ

KpmnqGpm,nq “
pKp0q?

q

ÿ ÿ

m,nPZ

Gpm,nq ` 1

q

ÿ ÿ

m,nPZ

qKpmnq pG
´m

q
,
n

q

¯
.

The key point is that when K is a (multiplicatively shifted) Kloosterman sum, then qG is a
normalized delta-function:

Lemma 2.2. For pa, qq “ 1 and Kpnq “ Kl2pan; qq one has

pKphq “
#
0 if q | h,
eqp´ahq if q ∤ h,
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and

qKpnq “

$
’&
’%

q ´ 1

q1{2
if n ” a mod q,

´ 1

q1{2
otherwise.

This lemma is proved by an immediate computation. We now begin with the proof of (1.3). Let
q be a prime and let W be a function satisfying (1.2). By integration by parts, we then have

xW ptq !j,ε min
`
1, qjε|t{Q|´j

˘

for t P R and for any integer j ě 0 and ε ą 0, where the implied constant depends only on j and ε.
Defining Gpm,nq “ W1pm{MqW2pn{Nq, we deduce that for any A and any ε ą 0, we have

(2.2) pG
´m

q
,
n

q

¯
“ MxW1

´mM

q

¯
NxW2

´nN

q

¯
!ε,A qεMN

´
1 ` |m|M

qQ

¯´A´
1 ` |n|N

qQ

¯´A

.

We next apply the Voronoi formula, Proposition 2.1, with Kpnq “ Kl2pan; qq to the left-hand side

of (1.3). The first term on the right-hand side of (2.1) vanishes since pKp0q “ 0. By Lemma 2.2
and (2.2), the contribution of mn ı a (mod q) in the second term is of order at most

MN

q3{2´ε

ÿ

m,nPZ

´
1 ` |m|M

qQ

¯´2´
1 ` |n|N

qQ

¯´2

! MN

q3{2´ε

´
1 ` qQ

M

¯´
1 ` qQ

N

¯

! qε
´MN

q3{2
` pM ` NqQ

q1{2
` q1{2Q2

¯
.

Similarly, the remaining terms mn ” a (mod q) are, up to a constant, bounded by

qε
MN

q1{2

ÿ

n”a pmod qq

dpnq
´
1 ` nMN

q2Q2

¯´2

! pq2Qqε
ˆ
MN

q1{2
` Q2q1{2

˙
.

This completes the proof of (1.3).
Next, we prove (1.4). We may suppose that

MN{8 ă Y ă 8MN,

since otherwise the sum of interest is empty. Then we see that for M{2 ă x ă 2M and N{2 ă y ă
2N , we have the inequalities

Bi`jW3pxy{Y q
Bxi Byj !ε,i,j pqεQqi`jM´iN´j

for all non-negative integers i, j. Hence the function Gpx, yq “ W1px{MqW2py{NqW3pxy{Y q satis-
fies the inequalities

Bi`jGpx, yq
BxiByj !ε,i,j pqεQqi`jx´iy´j,

for x, y ą 0, ε ą 0 and integers i, j ě 0. By repeated integration by parts of the definition of the
Fourier transform

pGpu, vq “
ż 8

´8

ż 8

´8
Gpx, yqep´ux ´ vyqdx dy,

we obtain the bound

pG
´m

q
,
n

q

¯
!ε,A qεMN

´
1 ` |m|M

qQ

¯´A´
1 ` |n|N

qQ

¯´A

for any A and any ε ą 0, analogously to (2.2). The end of the proof of (1.4) is now similar to (1.3).
For future reference we record the following bound for type II sums of Kloosterman sums [2,

Thm. 1.17].
5



Proposition 2.3. Let q be a prime number. Let 1 ď M,N ď q and pαmq, pβnq be sequences of

complex numbers supported in rM, 2M s and rN, 2N s respectively. Let either Q “ 1 and W be the

constant function 1, or Q ě 1 and W be a function satisfying (1.2). Then, for every ε ą 0, we
have ÿ ÿ

m,n

αmβn Kl2pmn; qqW
´mn

Y

¯
!ε }α}2 }β}2 pMNq1{2

´ 1

M
` Q

q1{2`ε

N

¯1{2
.

This is a special case of [2, Thm. 1.17] when W is the constant 1. For smooth W , the same
proof applies, except that we apply partial summation in [2, (3.2)] if m1 “ m2 to remove the weight
W pm1n{Y qW pm2n{Y q; this produces a factor Q that after taking square roots produces the above
bound.

3. Correlation sums of Kloosterman sums and Hecke eigenvalues

In this section we prove Proposition 1.3. We replace the tempered Voronoi summation formula
by the Voronoi summation formula for cusp forms, which we state in a form suited to our purpose.

Proposition 3.1 (Voronoi summation formula for cusp forms with arithmetic weights modulo
primes). Let q be a prime. Let W be a smooth function compactly supported in s0,8r and let f be

a holomorphic cuspidal Hecke eigenform of level 1 and weight k. Let εpfq “ ˘1 denote the sign of

the functional equation of the Hecke L-function Lpf, sq and let

ĂW pyq “
ż 8

0

W puqJkp4π?
uyqdu,

where

Jkpuq “ 2πikJk´1puq.
Then, for any q-periodic arithmetic function K : Z Ñ C, we have

ÿ

ně1

λf pnqKpnqW
´ n

N

¯
“

pKp0q
q1{2

ÿ

ně1

λf pnqW
´ n

N

¯
` εpfqN

q

ÿ

ně1

λf pnq qKpnqĂW
´nN

q2

¯
.

In particular, for a coprime to q, we have

ÿ

ně1

λf pnqKl2pan; qqW
´ n

N

¯
“ εpfq N

q1{2

ÿ

n”a pmod qq

λf pnqĂW
´nN

q2

¯
´εpfq N

q3{2

ÿ

ně1

λf pnqĂW
´nN

q2

¯
.

Proof. We expand Kpnq into additive characters

Kpnq “ 1

q1{2

ÿ

a pmod qq

pKpaqeqp´anq

and apply the classical summation formula
ÿ

ně1

λf pnqW
´ n

N

¯
e
´

´an

q

¯
“ εpfqN

q

ÿ

ně1

λf pnqe
´an

q

¯
ĂW

´Nn

q2

¯
,

valid for all N ą 0 and all a coprime to q ([6, Theorem A.4]). �

We can now easily prove Proposition 1.3: integration by parts shows that for any A ě 0 and
ε ą 0 we have

ĂW
´nN

q2

¯
!k,A,ε q

ε
´
1 ` nN

q2

¯´A

(see [1, Lemma 2.4]), so that (using Deligne’s bound |λf pnq| ď dpnq !ε n
ε), we get

ÿ

n

λf pnqKl2pan; qqW
´ n

N

¯
!ε,k pqNqε

´
q1{2 ` N

q1{2

¯
.
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4. Application to the fourth moment of Dirichlet L-functions

In this section we prove Theorem 1.5. The general strategy of the proof has been explained in
detail in our paper [1]. We assume some familiarity with this paper, and refer in particular to
[1, §1.2, §6.1, §6.3] for notations.

We begin with the unconditional bound. Let

B˘
E,EpM,Nq “ 1

pMNq1{2

ÿ

m”˘n pmod qq
m“n

dpmqdpnqW1

´ m

M

¯
W2

´ n

N

¯

´ 1

qpMNq1{2

ÿ

m,n

dpmqdpnqW1

´ m

M

¯
W2

´ n

N

¯
.

Our objective is to prove that for η “ 1{20 one has

(4.1) B˘
E,EpM,Nq ´ MTod,˘

E,E pM,Nq “: ET˘
E,EpM,Nq !ε q

´η`op1q,

where MTod,˘
E,E pM,Nq is a suitable main term (described in [8]) and M,N range over a set of

Oplog2 qq real numbers satisfying

1 ď M ď N, MN ď q2`op1q

(the first bound is by symmetry, the second is the length of the approximate functional equation).
We set

N˚ “ q2{N, M “ qµ, N “ qν , ν˚ “ 2 ´ ν,

so that

0 ď µ ď ν, ´ε ď ν˚ ´ µ.

In view of the bound [1, (3.18)], which reads

ET˘
E,EpM,Nq ! qε

´ N

qM

¯1{4
ˆ
1 `

´ N

qM

¯1{4
˙

and which is proved using spectral theory, we may also assume that

(4.2) µ ` ν˚ ď 1 ` 4η

for otherwise (4.1) is certainly true. Proceeding in the same way as in [1, §6.3], we apply Voronoi
summation to reduced to the following bounds for Oplog4 qq sums of the shape

S˘pM1,M2,M3,M4q “ 1

pqMN˚q1{2

ÿ ÿ

m1,m2,m3,m4

W1

ˆ
m1

M1

˙
W2

ˆ
m2

M2

˙

ˆ W3

ˆ
m3

M3

˙
W4

ˆ
m4

M4

˙
Kl2p˘m1m2m3m4; qq ! q´η`op1q,

where the Wi satisfy (1.2) with Q “ qε, and the Mi written in the shape Mi “ qµi , i “ 1, 2, 3, 4,
satisfy

µ1 ď µ2 ď µ3 ď µ4, 0 ď µ1 ` µ2 ` µ3 ` µ4 “ µ ` ν 1, ν 1 ď ν˚.

By the trivial bound for Kloosterman sums (and recalling (4.2)), we may assume that

(4.3) 1 ´ 2η ď µ ` ν 1 ď µ ` ν˚ ď 1 ` 4η,

for otherwise (4.1) is true.
We use the same strategy as in [1, §6.3], except that we replace [1, (5.5)] by Proposition 1.2.

Thus, if the largest variables m3,m4 are large enough, we apply (1.3) to them (fixing m1,m2);
7



otherwise, we find it more beneficial to group variables differently producing a bilinear sum of
Kloosterman sums to which we apply Proposition 2.3.

Explicitly, using (1.3) we obtain that

S˘pM1,M2,M3,M4q ! qop1q M1M2

pqMN˚q1{2

´
q1{2 ` M3M4

q1{2

¯

! qop1q
´c

M1M2

M3M4

` pMN 1q1{2

q

¯
! qop1q

´c
M1M2

M3M4

` q´η
¯

since q
1

2
p1`4ηq´1 ď q´η. We may therefore assume that

(4.4) 0 ď µ3 ` µ4 ´ pµ1 ` µ2q ď 2η.

We now apply Proposition 2.3 with M “ M4 and N “ M1M2M3 so that MN “ qµ`ν1 ď MN˚ and
derive

S˘pM1,M2,M3,M4q ! qop1q
`
q

µ1`µ2`µ3´1

2 ` q´ 1

4
`

µ4
2

˘
.

We claim that under the current assumptions both exponents on the right hand side are ď ´η,
which completes the proof. Indeed, since µ4 ě µi for i “ 1, 2, 3, we obtain by (4.3) that

´
1 ` 1

3

¯
pµ1 ` µ2 ` µ3q ď µ1 ` µ2 ` µ3 ` µ4 ď 1 ` 4η ùñ µ1 ` µ2 ` µ3 ď 3

4
` 3η,

hence
µ1 ` µ2 ` µ3 ´ 1

2
ď ´1

8
` 3

2
η ď ´η.

Moreover, by (4.4) and (4.3) (since µ1 ď µ2 ď µ3 ď µ4) we have

µ4 ď 2η ` µ1 ` µ2 ´ µ3 ď 2η ` µ1 ď 2η ` 1

3
p1 ` 4η ´ µ4q “ 1

3
` 10

3
η ´ 1

3
µ4,

which implies that µ4 ď 1
4

` 5
2
η, and so

´1

4
` µ4

2
ď ´1

8
` 5

4
η ď ´η.

If the Ramanujan–Petersson conjecture is available, we can use [1, (1.7)] with θ “ 0 in place of
[1, (3.2)] and replace (4.2) with µ ` ν˚ ď 1 ` 2η. Then the same strategy leads to the numerical
value η “ 1{16.

5. Sums of Kloosterman sums along the primes: proof of Theorem 1.8

5.1. Proof of inequality (1.9). We now recall the main ideas of the proof of [2, Thm. 1.5], since
our proof will follow the same path until the moment we use Proposition 1.2. We will incorporate
some shortcuts and combinatorial improvements to [2], mainly due to the assumption X ď q. By
[2, p. 1711–1716], we are reduced to proving the same bound as (1.9) for the sum

SW,XpΛ,Kl2q :“
ÿ

n

ΛpnqKl2pn; qqW
´ n

X

¯
,

where Λ is the von Mangoldt function. We now apply Heath-Brown’s identity [5] with integer pa-
rameter J ě 2. This decomposes SW,XpΛ,Kl2q into a linear combination, with coefficients bounded

by OJ plogXq, of Oplog2J Xq sums of the shape

(5.1) ΣpM ,N q “
ÿ

¨ ¨ ¨
ÿ

m1,...,mJ

α1pm1qα2pm2q ¨ ¨ ¨αJpmJq

ˆ
ÿ

¨ ¨ ¨
ÿ

n1,...,nJ

V1

´ n1

N1

¯
¨ ¨ ¨ VJ

´ nJ

NJ

¯
W

´m1 ¨ ¨ ¨mJn1 ¨ ¨ ¨ nJ

X

¯
Kl2pm1 ¨ ¨ ¨mJn1 ¨ ¨ ¨nJ ; qq
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where

‚ M “ pM1, . . . ,MJ q, N “ pN1, . . . , NJq are J-tuples of parameters in r1{2, 2Xs2J which
satisfy

(5.2) N1 ě N2 ě ¨ ¨ ¨ ě NJ , Mi ď X1{J , M1 ¨ ¨ ¨MJN1 ¨ ¨ ¨NJ —J X;

‚ the arithmetic functions m ÞÑ αipmq are bounded and supported in rMi{2, 2Mis;
‚ the smooth functions x ÞÑ Vipxq satisfy (1.2) with parameter Q.

It now remains to study the sum ΣpM ,N q defined in (5.1) for every pM ,N q as above. We
estimate ΣpM ,N q in two ways.

Our first method is to bound ΣpM ,N q by applying (1.4) to the largest smooth variables n1 and
n2 in ΣpM ,N q and a trivial summation over the other variables. We obtain

ΣpM ,N q ! qεQ2X
´ q1{2

N1N2

` 1

q1{2

¯
,

which, by (5.2) and the assumption X ď q, simplifies into

(5.3) ΣpM ,N q ! qεQ2X
`
q1{2{pN1N2q

˘
.

Our second method is to apply Proposition 2.3 to ΣpM ,N q; in this way we obtain

(5.4) ΣpM ,N q ! qεQ1{2 X
´ 1

M1{2
` q1{4

pX{Mq1{2

¯

for any factorization

M1 ¨ ¨ ¨MJN1 ¨ ¨ ¨NJ “ M ˆ N.

We have now to play with (5.3) and (5.4) in an optimal way to bound ΣpM ,N q. We follow the
same presentation as in [2, §4.2]. We introduce the real numbers κ, x, µi, νj, 1 ď i, j ď J , defined
by

Q “ qκ, X “ qx, Mi “ qµi , Nj “ qνj

and we set

pm,nq “ pµ1, . . . , µJ , ν1, . . . , νJ q P r0, xs2J .
The conditions (5.2) are reinterpreted as

(5.5)
ÿ

i

µi `
ÿ

j

νj “ x ď 1, µi ď x{J, ν1 ě ν2 ě ¨ ¨ ¨ ě νJ .

According to (5.3) and (5.4), we introduce the function (compare with [2, definition (4.5)])
ηpm,nq defined by

(5.6) ηpm,nq :“ max
!

pν1 ` ν2q ´ 1

2
´ 2κ ; max

σ
min

´σ

2
,
x ´ σ

2
´ 1

4

¯
´ κ

2

)
,

where σ ranges over all possible sub-sums of the µi and νj for 1 ď i, j ď J , that is, over the sums

σ “
ÿ

iPI

µi `
ÿ

jPJ

νj ,

for I and J ranging over all possible subsets of t1, . . . , Ju.
With these conventions, as a consequence of (5.3) and (5.4) we have the inequality

ΣpM ,N q ! pqQqεq´ηpm,nq X,

and finally, summing aver all possible pM ,N q, we have the inequality

(5.7) SW,XpΛ,Kl2q ! pqQqε q´η X,
9



where

η “ min
pm,nq

ηpm,nq,

where pm,nq satisfy (5.5).
The estimate (1.9) is trivial for x ă 3{4, so we may assume that 3{4 ď x ď 1. For ε ą 0

sufficiently small, let Ix be the interval

Ix “ rx{6 ´ ε, x{3 ` εs,
and choose J “ 10 to apply Heath-Brown’s identity.

We now consider two different cases in the combinatorics of pm,nq.
‚ If pm,nq contains a subsum σ P Ix, then, by (5.6), we have the inequality

ηpm,nq ě min
´x{6

2
,
x ´ x{3

2
´ 1

4

¯
´ κ

2
´ ε

2
,

which simplifies into

(5.8) ηpm,nq ě x

3
´ 1

4
´ κ

2
´ ε

2
.

‚ If pm,nq contains no subsum σ P Ix, then the sum of all the µi and νj which are less than
x{6´ε is also less than x{6´ε (this is a consequence of the inequality 2px{6´εq ă x{3`ε).
In light of (5.5), this includes all µi, and so some νj must be greater than x{3 ` ε. On the
other hand, since 3px{3 ` εq ą x, we deduce that at most two νi (more precisely, ν1 or ν1
and ν2) are greater than x{3 ` ε. Combining these remarks, we deduce the inequality

ν1 ` ν2 ě x ´ px{6 ´ εq “ 5x{6 ` ε,

which implies, by (5.6), the inequality

(5.9) ηpm,nq ě 5x

6
´ 1

2
´ 2κ ´ ε.

By (5.7), (5.8) and (5.9), we deduce the inequality

(5.10) SW,XpΛ,Kl2q ! pqQqε
`
q1{4Q1{2X2{3 ` q1{2Q2X1{6

˘
.

In the above upper bound, the first term is larger than the second one if and only if Q ă q´1{6X1{3,
and in this case, we have Qε ă qε. However, when Q ě q´1{6X1{3, it is easy to see that the bound
(1.9) is trivial since we have

q1{4Q1{2X2{3 ě q1{4pq´1{6X1{3q1{2X2{3 “ q1{6X5{6 ě X,

since we suppose X ď q. In conclusion, we may drop the second term on the right-hand side of
(5.10). This remark completes the proof of (1.9).

5.2. Proof of inequality (1.10). The proof mimics the proof appearing in [2, §4.3]. By a simple
subdivision, it is sufficient to prove the inequality

(5.11)
ÿ

Xăpď 3

2
X

p prime

Kl2pp; qq ! q1{6`εX7{9.

Let ∆ ă 1{2 be some parameter, let W be a smooth function defined on r0,`8r such that

supppW q Ă r1 ´ ∆, 3
2

` ∆s, 0 ď W ď 1, W pxq “ 1 for 1 ď x ď 3
2
,

and such that the derivatives satisfy

xjW pjqpxq !j Q
j,
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with Q “ ∆´1. By applying (1.9), we have
ÿ

Xăpď 3

2
X

p prime

Kl2pp; qq ! ∆X ` 1 `
ˇ̌
ˇ
ÿ

p

W
´ p

X

¯
Kl2pp; qq

ˇ̌
ˇ

! ∆X ` q1{4`εQ1{2X2{3 ! q1{6`εX7{9,

by the choice ∆ “ q1{6X´2{9 ă 1{2 (the claim is trivial if q1{6 ě 1
2
X2{9). This completes the proof

of (5.11).
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ETH Zürich – D-MATH, Rämistrasse 101, CH-8092 Zürich, Switzerland
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